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We investigate the spectral properties of a one-dimensional piecewise linear intermittent map, which has not
only a marginal fixed point but also a singular structure suppressing injections of the orbits into neighborhoods
of the marginal fixed point. We explicitly derive generalized eigenvalues and eigenfunctions of the Frobenius-
Perron operator of the map for classes of observables and piecewise constant initial densities, and it is found
that the Frobenius-Perron operator has two simple real eigenvalues 1 and �d� �−1,0� and a continuous
spectrum on the real line �0,1�. From these spectral properties, we also found that this system exhibits a power
law decay of correlations. This analytical result is found to be in a good agreement with numerical simulations.
Moreover, the system can be extended to an area-preserving invertible map defined on the unit square. This
extended system is similar to the baker transformation, but does not satisfy hyperbolicity. A relation between
this area-preserving map and a billiard system is also discussed.
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I. INTRODUCTION

In the past decades, a lot of studies have been devoted to
investigations of the relations between microscopic chaos
and nonequilibrium behaviors such as relaxation and trans-
port, and it has been found that microscopic chaos plays
essential roles in nonequilibrium processes �1,2�. For ex-
ample, it is well known that, for fully chaotic �hyperbolic�
systems, correlation functions decay exponentially and their
decay rates are characterized by the discrete eigenvalues of
its Frobenius-Perron �FP� operator �3–7�. As one of the ex-
amples of hyperbolic systems that permit detailed calcula-
tions, the baker transformation has been studied extensively
and its spectral properties of FP operator are fully understood
�8�. In addition, the baker map is considered as an abstract
model of chaotic Hamiltonian systems, because it has the
area-preserving property, which is a universal feature of the
Poincaré map of Hamiltonian systems of two degrees of free-
dom �9�. In fact, similarities of the baker map to the Lorentz
gas with finite horizon have been pointed out �10�.

In contrast to hyperbolic systems, the dynamics in generic
Hamiltonian systems is more complicated and diverse. When
the phase space of a Hamiltonian system consists of inte-
grable �torus� and nonintegrable components �chaos�, the
power law decay of correlations is frequently observed
�11–16�. Although such kinds of systems—i.e., systems with
mixed-type phase spaces—are more generic than integrable
or fully chaotic systems, a theoretical understanding of their
statistical properties is not enough; for example, the ergodic
and mixing properties of chaotic components of generic sys-
tems are still unclear from the theoretical point of view.

For understanding the subexponential decay of correlation
functions in dynamical systems, nonhyperbolic one-
dimensional maps have been studied by several authors
�17–26� and they have found power law decays of correla-

tions in their models. Therefore, it is natural to imagine a
close connection of these nonhyperbolic maps and mixed-
type Hamiltonian systems; however, extensions of these
maps to two-dimensional area-preserving systems are un-
known. Thus, in this paper, we introduce a modified version
of the one-dimensional intermittent map studied in Ref. �19�
and extend it to an area-preserving system. This area-
preserving map, which is similar to the baker transformation,
may be considered as an abstract model of mixed-type
Hamiltonian systems.

Our theoretical treatment is mainly based on Ref. �19�,
where a piecewise linear version of the Pomeau-Manneville
map �27,28� is proposed and its generalized spectral proper-
ties of the FP operator in a sense of Refs. �29,30� have been
elucidated. Their model has a marginal fixed point and ex-
hibits power law decays of correlations which they have
found to be the outcome of a continuous spectrum of the FP
operator. In addition to a marginal fixed point, the piecewise
linear map studied in the present paper has a singular struc-
ture, which suppresses injections of the orbits into neighbor-
hoods of the marginal fixed point. Due to this property, the
uniform density is invariant under time evolution and the
map can be extended to an area-preserving map on the unit
square. And it is shown that generalized eigenvalues of the
FP operator consists of two simple real eigenvalues 1 and
�d� �−1,0� and a continuous spectrum on the real interval
�0,1�. It is also shown that correlation functions exhibit a
power law decay due to the continuous spectrum.

This paper is organized as follows. In Sec. II, we intro-
duce the piecewise linear map and define the FP operator,
observables, and initial densities. In Sec. III, we derive the
spectral decomposition of the FP operator. In Sec. IV, long-
time behaviors are analyzed and some numerical results are
displayed. We also discuss the extension of our model to an
area-preserving invertible map in Sec. IV. Section V is de-
voted to summary and remarks that include comments on
differences between our model and the one in Ref. �19� and
about similarities to a billiard system.*Electronic address: tomo@nse.es.hokudai.ac.jp
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II. PIECEWISE LINEAR MAP

A. Definition of the map

The dynamical system we consider in this paper is the
piecewise linear map shown in Fig. 1. This map
��x� : �0,1�→ �0,1� consists of two parts: the left 0�x�b
and the right part b�x�1. Each part is formed by an infinite
number of straight line segments; the circles plotted in Fig. 1
indicate end points of these segments. The map ��x� is de-
fined by

��x� = ��k
−�x − �k

−� + �k−1
− for x � ��k

−,�k−1
− � �k = 1,2, . . . � ,

�k
+�x − �k

+� + �k−1
− for x � ��k

+,�k−1
+ � �k = 1,2, . . . � .

�
�1�

In this definition, �k
− �k=0,1 , . . . � represent the horizontal

coordinates of the end points of the segments on the left part
�x�b� and they are defined as

�0
− = b ,

�k−1
− − �k

− =
b

��	�
�1

k
�	

for k = 1,2, . . . , �2�

where 	
1 is a parameter and ��	�=	n=1
� 1/n	 is the Rie-

mann zeta function. And �k
− is the slope of the kth segment,

defined as

�k
− =

�k−2
− − �k−1

−

�k−1
− − �k

− �3�

=

1 − b

b
��	� for k = 1,

� k

k − 1
�	

for k = 2,3, . . . ,� �4�

where we define �−1
− =1 for convenience. This definition of

the left part �0�x�b� is the same as that of the piecewise
linear Pomeau-Manneville map proposed in Ref. �19�. The
map ��x� can be approximated as ��x��x+Cx	/�	−1� when
x→0+, where C is a constant. Thus the origin x=0 is a
marginal fixed point.

In the same way, �k
+ �k=0,1 , . . . � are the horizontal coor-

dinates of the end points of the segments on the right part
and defined as

�1
+ = b�1 +

1

��	�
�, �0

+ = 1,

�k−1
+ − �k

+ =
b

��	�� 1

�k − 1�	 −
1

k	� for k = 2,3, . . . , �5�

and �k
+ is the slope of the k-th segment and defined as

�k
+ =

�k−2
− − �k−1

−

�k−1
+ − �k

+ �6�

=

1 − b

1 − b�1 + 1/��	��
for k = 1,

k	

k	 − �k − 1�	 for k = 2,3, . . . .� �7�

This is the definition of the right part of the map ��x�, b
�x�1. This part is different from Pomeau-Manneville-type
maps and is similar to a map proposed by Artuso and Cris-
tadoro �18�. ��x� behaves as ��x���x−b��	−1�/	 when x
→b+. Therefore the derivative ���x� of the map is divergent
at x=b+.

We assume that �1
+
0—i.e.,

b �
��	�

1 + ��	�
. �8�

Note that the uniform density on the interval �0,1� is invari-
ant under the time evolution of this map because the relation
1/�k

++1/�k
−=1 is satisfied for k=1,2 , . . .. Figure 1 shows the

shape of the map ��x� for 	=1.3 and b=0.5. There is a
singular structure near x=b, which suppresses injections of
the orbits into neighborhoods of the marginal fixed point x
=0. This system can be easily extended to a two-dimensional
area-preserving map, whose dynamics of the expanding di-
rection is given by the map ��x�. This will be discussed in
Sec. IV.

B. FP operator on functional spaces

The FP operator P̂ and its adjoint P̂* are defined by

P̂��x� = 
0

1

dy„x − ��y�…��y� , �9�

P̂*A�x� = A„��x�… , �10�

respectively. We also define an inner product �A ,�� as the
average of an observable A�x� with respect to a density ��x�,

�A,�� = 
0

1

dxA�x���x� . �11�

Then, the average of A�x� at time t with respect to an initial

density ��x� is given by �A , P̂t��= �P̂*tA ,��.
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FIG. 1. The piecewise linear map ��x� �solid line� for b=0.5
and 	=1.3. The circles indicate end points of the straight line
segments.
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Let us consider that an observable A�x� such as the in-
equality

�A�x� − a0 − a1x� � Kx	/�	−1� �12�

holds for some positive constant K, where the constants a0
and a1 satisfy a0=A�0� and a1=A��0�, respectively �19�. This
function is bounded on �0,1� and smooth near the origin. And
we define a set XO as the functional space which consists of
such observables. This functional space is invariant under the

action of the adjoint of the FP operator P̂*—namely,

P̂*A�x��XO if A�x��XO. If we define the norm as

�A�x��O = �a0� + �a1� + sup
x

�A�x�� + sup
x

�A�x� − a0 − a1x�
x	/�	−1� ,

�13�

then this functional space becomes a Banach space with re-
spect to this norm. Note that this space is dense in the Hilbert
space L2�0,1� of the square-integrable functions on �0,1�.

Furthermore, we restrict initial densities to be piecewise
constant �24�,

��x� = �̃k if x � ��k
−,�k−1

− � �k = 0,1,2, . . . � . �14�

We also assume the following properties for k=1,2 , . . .:

�̃k = 	
l=0

�

�l� k

k + l
�	

with 	
l=0

�

��l��l � + � , �15�

where �
1 is a constant. We also assume the normalization
condition

b

��	�	k=1

�
�̃k

k	 + �1 − b��̃0 = 1. �16�

In the following sections, we use this condition �Eq. �16��
only for clarity of exposition. But it is not essential and al-
most the same result can be obtained without it.

We define a set XD as the functional space which consists
of such densities. This functional space is invariant under the

action of the FP operator; namely, P̂��XD if ��XD. And if
the norm of this space is defined as

���D = 	
l=0

�

��l��l, �17�

this functional space becomes a Banach space. The func-
tional space XD is not dense in L2�0,1�.

In the above definition for initial densities, we assume that
the initial densities are constant on the interval �b ,1�—i.e.,
the right part of the map. Although it seems to be a strong
restriction and it is possible to extend to the densities piece-
wise constant also in ��k

+ ,�k−1
+ �, this extension does not make

any changes for the long-time behaviors because for such

densities we have P̂��x��XD.

III. SPECTRAL ANALYSIS

The purpose of this section is to derive a spectral decom-

position of the average �A , P̂t��. First, we derive the matrix

elements of the resolvent operator of P̂; then, the average

�A , P̂t�� is obtained by an integral transformation of the ma-
trix elements of the resolvent. Finally, deforming the integra-
tion path, we have the spectral decomposition.

A. Matrix elements of the resolvent operator

Let us define the matrix elements of the resolvent of the

FP operator P̂ as

�A,
1

z − P̂
�� = 	

t=0

�
1

zt+1 �A, P̂t�� = 	
k=1

�

��̃kB̂k
−�z� + �̃0B̂k

+�z�� ,

�18�

where B̂k
±�z� are defined below �see Eq. �21��. Let us rewrite

�A , P̂t�� as

�A, P̂t�� = 
0

1

dxA��t�x����x� = 	
k=1

�

��̃kBk
−�t� + �̃0Bk

+�t�� ,

�19�

where Bk
±�t� are defined for k=1,2 , . . . by

Bk
±�t� � 

�k
±

�k−1
±

dxA„�t�x�… . �20�

Then B̂k
±�z� are defined for k=1,2 , . . . by

B̂k
±�z� � 	

t=0

�
Bk

±�t�
zt+1 . �21�

From Eq. �20�, we have the following recursion relations
for Bk

±�t�:

B1
±�t + 1� =

1

�1
±	

k=1

�

Bk
+�t� , �22�

Bk
±�t + 1� =

1

�k
±Bk−1

− �t� for k = 2,3, . . . . �23�

From Eqs. �21�–�23�, we have the recursion relations for

B̂k
±�z�:

B̂1
±�z� =

B1
±�0�
z

+
1

z�1
±	

k=1

�

B̂k
+�z� , �24�

B̂k
±�z� =

Bk
±�0�
z

+
1

z�k
± B̂k−1

− �z� for k = 2,3, . . . . �25�

Using these relations recursively, the following equation can
be derived for k=1,2 , . . .:

B̂k
−�z� = 	

m=0

k−1
Bk−m

− �0�
zm+1 � k − m

k
�	

+
1

zkk	

b

�1 − b���	� 	
m=1

�

B̂m
+ �z� .

�26�

Furthermore, from Eqs. �25� and �26�, we obtain, for k
=2,3 , . . .,
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B̂k
+�z� =

Bk
+�0�
z

+
1

�k
+�	

m=0

k−2
Bk−m−1

− �0�
zm+2 � k − m − 1

k − 1
�	�

�27�

� +
1

zk�k − 1�	

b

�1 − b���	� 	
m=1

�

B̂m
+ �z�� . �28�

Summing up Eq. �24� and Eqs. �28�, we have

	
k=1

�

B̂k
+�z� =

��z�
Z�z�

, �29�

where Z�z� and ��z� are defined by

Z�z� � z −
1

�1
+ −

b

�1 − b���	�	k=1

�
1

�k+1
+ zkk	

, �30�

��z� � 	
k=1

�

Bk
+�0� + 	

l=1

�

	
m=0

�
Bl

−�0�
�m+l+1

+ zm+1� l

m + l
�	

. �31�

The two z−1 power series on the right-hand sides of Eqs. �30�
and �31� are absolutely convergent for �z�
1; hence, the
functions Z�z� and ��z� are analytic there. From Eqs. �26�
and �29�–�31�, the matrix elements of the resolvent �Eq. �18��
can be rewritten as

�A,
1

z − P
�� =

��z���z�
Z�z�

+ 	
l=1

�

	
k=l

�
�̃kBl

−�0�
zk−l+1 � l

k
�	

=
��z���z�

Z�z�
+

�1 − b���	�
b

���z� − B1
−�0��̃0� ,

�32�

where we define the functions ��z� and ��z� as

��z� � �̃0 +
b

�1 − b���	�	k=1

�
�̃k

zkk	 �33�

and

��z� = B1
−�0���z� + 	

l=2

�

Bl
−�0�l	zl−1���z� − �̃0

−
b

�1 − b���	�	k=1

l−1
�̃k

zkk	� , �34�

respectively. ��z� and ��z� are also analytic for �z�
1, as
each representing series in Eqs. �33� and �34� is absolutely
convergent there.

B. Analytic properties of individual functions

For r��z�
1, we obtain the average �A ,�t� by an integral
transformation of the resolvent �Eq. �32�� as follows:

�A, P̂t�� = �
�z�=r

dz

2�i
zt�A,

1

z − P
��

= �
�z�=r

dz

2�i
zt���z���z�

Z�z�
+

�1 − b���	�
b

��z�� ,

�35�

where the integration path is taken in a counterclockwise
direction. In order to deform this integration path into a unit
disk �z��1 and derive the spectral decomposition, we study
the analytic properties of the functions in the integrand of
Eq. �35� in this subsection. With the help of the identity

1

k	 =
1

��	�0

�

dss	−1e−ks, �36�

we have analytic continuations of the functions Z�z�, ��z�,
and ��z� into the unit disk �z��1. For example, ��z� can be
analytically continued as follows:

��z� = 	
k=1

�

Bk
+�0� +

1

��	�	l=1

�
Bl

−�0�l	

z

�
0

�

dss	−1e−ls�1 − e−s�	
m=0

�

�z−1e−s�m �37�

=	
k=1

�

Bk
+�0� +

1

��	�	l=1

�

Bl
−�0�l	

0

�

ds
s	−1e−ls

z − e−s �1

− e−s� , �38�

where these calculations are justified because the conver-
gence of the summation is uniform in s for �z�
1. Note that
each integral on the right-hand side �RHS� of Eq. �38� is
analytic except for the real interval �0, 1�. Then the function
��z� expressed as Eq. �38� is analytic except for the cut �0,
1�, because the second infinite sum in Eq. �38� is absolutely
convergent—i.e.,

1

��	�	l=1

� �Bl
−�0�l	

0

�

ds
s	−1e−ls

z − e−s �1 − e−s�� �
b supx�A�x��

��	�d�z,�0,1��
,

�39�

where d�z , �0,1�� is the distance between z and the real in-
terval �0, 1�.

In the same way, we obtain analytical continuations of the
functions Z�z� and ��z�:

Z�z� = �z − 1��1 +
b

�1 − b���	���	�0

�

ds
s	−1e−s

z − e−s � ,

�40�
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��z� = �̃0 +
b

�1 − b���	���	�	l=0

�

�l
0

�

ds
s	−1e−�l+1�s

z − e−s .

�41�

These expressions for the functions Z�z� and ��z� are also
analytic except for the cut �0, 1�. And the function ��z� can
be also analytically continued into the unit disk �z��1 in the
same way. Here, however, we rewrite the function ��z� in
the following form:

��z� = ��z�	
l=1

�

l	Bl
−�0�zl−1

− 	
l=2

�

l	Bl
−�0�zl−1��̃0 +

b

�1 − b���	�	k=1

l−1
�̃k

zkk	� .

�42�

The infinite sums in this expression of the function ��z� are
absolutely convergent for �z��1.

Let us consider the zeros of the function Z�z�. First we
define a function ��z� as ��z��Z�z� / �z−1�. And if Im�z�
�0, then

Im ��z� = −
b Im�z�

�1 − b���	���	�0

�

ds
s	−1e−s

�z − e−s�2
� 0. �43�

And also if Im�z�=0 and Re�z�
1, then ��z�
0, because
z−e−s
0. Thus there is no zero of Z�z� in these regions.

Next if Im�z�=0 and Re�z��0, we have

���z� = −
b

�1 − b���	���	�0

�

ds
s	−1e−s

�z − e−s�2 � 0 �44�

and

��− 1� = 1 −
b

�1 − b���	���	�0

�

ds
s	−1

es + 1


 1 −
b

�1 − b���	���	�0

�

ds
s	−1

es

= 1 −
b

�1 − b���	�

 0. �45�

The last inequality holds because of the inequality in �8�, the
validity of which is derived from the expression �k

+
0 for
k=1 in �7�. And it is easy to see that ��z�→−� as z→0.
Therefore, on the real interval �−1,0�, ��z� has the unique
zero �d of order 1.

C. Spectral decomposition

From the results of the last subsection, the contour of the
integration of Eq. �35� can be deformed into the unit disk
�z��1 as

�A, P̂t�� = lim
�→0

�
�z−�d�=�

dz

2�i
zt��z���z�

Z�z�

+ lim
�→0

�
C

dz

2�i
zt���z���z�

Z�z�
+

�1 − b���	�
b

��z�� ,

�46�

where the integration path C is defined by

C � �z� �z� = �, �z − 1� = � or z = � ± i0 �� � � � 1 − �� .

�47�

The first term on the RHS of Eq. �46� corresponds to the
simple pole at z=�d and thus can be calculated by the residue
theorem, and Eq. �46� is rewritten as

�A, P̂t�� = �d
t ���d����d�
��d − 1�����d�

+ lim
�→0

�
C

dz

2�i
zt���z���z�

Z�z�

+
�1 − b���	�

b
��z�� . �48�

Let us consider the integral on the RHS of Eq. �48�. Be-
cause of the facts �see the Appendix�

lim
z→0

z���z� = 0 �49�

and

lim
z→0

z���z���z�
Z�z�

= 0, �50�

for ∀ �
0, the contribution from the integration around the
origin, ��z�=��, vanishes.

Similarly, we obtain �see the Appendix�

lim
z→1

�z − 1���z� = 0, �51�

and then the contribution from the integral around z=1, ��z
−1�=��, vanishes for the second term of the integrand. On
the other hand, we have

lim
�→1


�z−1�=�

dzzt��z���z�
Z�z�

= lim
z→1

�z − 1�
��z���z�

Z�z�

= 
0

1

dxA�x���1 − b��̃0

+
b

��	�	k=1

�
�̃k

k	� = 
0

1

dxA�x� ,

�52�

where we have used the normalization condition �16�. The
RHS of Eq. �52� is the average of A�x� with respect to the
invariant density which is uniform for the map ��x�; there-
fore, Eq. �52� gives the average value of the invariant state.

Finally we have to evaluate the integral along the cut. For

this purpose, we define the new functions �̂���, f��x�, and
�l�x� for 0���1 as follows:
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�̂��� � 1 +
b

�1 − b���	���	�0

�

dsPs	−1e−s

� − e−s , �53�

f��x� �
1

1 − b��0�x� +
1

��	�	l=1

�

l	�l�x�

�
0

�

dsPs	−1e−ls

� − e−s �1 − e−s�� , �54�

�l��� �
1

��	���	�0

�

dsPs	−1e−�l+1�s

� − e−s , �55�

where P means the Cauchy’s principle value and �l�x� is
defined, for l=0,1 , . . ., by

�l�x� = �1 for �l
− � x � �l−1

− ,

0 otherwise.
� �56�

Note that we have defined �−1=1 in Sec. II. These functions
are related to the real parts of the functions �Z�z� ,��z� ,��z��
near the cut: Re Z��± i0�= ��−1��̂���, Re ���± i0�= �1
−b��0

1dxA�x�f��x�, and Re ���± i0�= �̃0+b / �1
−b�	l=0

� �l�l���.
It can also be shown for the imaginary parts of the func-

tions �Z�z� ,��z� ,��z�� near the cut that

Im ��� − i0�
Im Z�� + i0�

=
�1 − b���	�

b
	
l=1

�

l	Bl
−�0��l−1, �57�

Im ��� − i0�
Im Z�� + i0�

=
1

1 − �
	
l=0

�

�l�
l. �58�

Using these functions, we can calculate the integral along
the cut as follows �19�:

lim
�→0


C\��z�=���z−1�=��

dz

2�i
zt���z���z�

Z�z�

+
�1 − b���	�

b
��z�	

l=1

�

l	Bl
−�0�zl−1�

= 
0

1 d�

�
�t Im�Z�� + i0���� − i0��Im�Z�� + i0���� − i0��

�Z�� + i0��2 Im Z�� + i0�

�59�

=
b

�1 − b���	���	�0

1

d�
Im�Z�� + i0���� − i0��

Im Z�� + i0�
�60�

�

�t�1 − ���ln
1

�
�	−1

�Z�� + i0��2
Im�Z�� + i0���� − i0��

Im Z�� + i0�
�61�

=
0

1

d��A,F���t�F̃�,�� , �62�

where we define the linear functional �A ,F�� of the observ-
ables A�x� as

�A,F�� � N���
0

1

dx�A�x� − A�0��� f��x�

+
�� − 1��̂�����	�

b
	
l=1

�

l	�l−1�l�x�� . �63�

The function N��� in Eq. �63� is given by
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FIG. 2. �a� Power spectral densities S�f� of time series A(x�t�) �in log-log form� for five different values of the system parameter 	:
	=1.2 �solid line�, 1.4 �dotted line�, 1.6 �dashed line�, 1.8 �long-dashed line�, 2.0 �dash-dotted line�, and 2.2 �dashed-double-dotted line�. The
other parameter b is set to 1/2. These PSDs are obtained by averaging over 20 000 initial conditions uniformly distributed in �0,1�. �b� The
scaling exponent � of the PSD S�f��1/ f� as a function of 	. The circles are the numerical results obtained by least-squares fitting in the
low-frequency region �below f =10−4� of the PSDs S�f�, and the dashed line is the theoretical prediction �Eq. �75��.
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N��� �

b

��	���	��1 − b�
�ln

1

�
�	−1

�1 − ����̂2��� + � b

��	���	��1 − b�
�ln

1

�
�	−1�2� .

�64�

We also define in Eq. �62� the linear functional �F̃� ,�� of the
initial densities ��x� as

�F̃�,�� � �1 − b��̃0 + b	
l=0

�

�l��l��� −
1 − b

b
�̂����l� .

�65�

Similarly, the linear functionals associated with the eigen-
values z=�d and z=1, which have been obtained in Eqs. �48�
and �53�, can be expressed as

�A,Fd� �
1

��d − 1�����d�0

1

dxA�x�f�d
�x� , �66�

�F̃d,�� � �1 − b��̃0 + b	
l=0

�

�l�l��d� �67�

and

�A,Fin� � 
0

1

dxA�x� , �68�

�F̃in,�� � 1, �69�

respectively. It is easy to check that �A ,F��= �A ,Fd�=0 if

A�x� is a constant function and that �F̃� ,��= �F̃d ,��=0 if
��x��1.

Using these linear functionals, we can spectrally decom-
pose the average �A ,�t� �Eq. �48�� at time t=0,1 ,2 , . . . as

�A, P̂t�� = �A,Fin��F̃in,�� + �d
t �A,Fd��F̃d,��

+ 
0

1

d��t�A,F���F̃�,�� . �70�

The left eigenfunctions �Fin ,Fd ,F�� satisfy the relations

�A, P̂Fin� � �P̂*A,Fin� = �A,Fin� ,

�A, P̂Fd� � �P̂*A,Fd� = �d�A,Fd� ,

�A, P̂F�� � �P̂*A,F�� = ��A,F�� . �71�

Therefore �Fin ,Fd ,F�� are eigenfunctions of the FP operator
in a generalized sense �19,24,29,30�. On the other hand, the

right eigenfunctions �F̃in , F̃d , F̃�� satisfy the relations

�P̂*F̃in,�� � �F̃in, P̂�� = �F̃in,�� ,

�P̂*F̃d,�� � �F̃d, P̂�� = �d�F̃d,�� ,

�P̂*F̃�,�� � �F̃�, P̂�� = ��F̃�,�� . �72�

Therefore �F̃in , F̃d , F̃�� are eigenfunctions of the adjoint of
the FP operator in a generalized sense.

Thus we obtain the spectral decomposition, Eq. �70�,
where the spectrum consists of two discrete eigenvalues 1
and �d, and a continuous spectrum on �0, 1�. And Eq. �70� for
t=0 shows that these eigenfunctions are complete.

IV. LONG-TIME BEHAVIORS AND AN AREA-
PRESERVING EXTENSION

A. Long-time behaviors

In the previous section, we derive the spectral decompo-

sition of the average �A , P̂t�� and found that there is a con-
tinuous spectrum. Since long-time behaviors are controlled
by eigenvalues whose absolute values are close to 1, we
consider the limit �→1 for the continuous spectrum. The
eigenstate associated with the eigenvalue �d does not con-
tribute to long-time behaviors, because this state decays ex-
ponentially. Under the assumption �12�, the leading term of
the left eigenstate �A ,F�� when ��1 is given by

�A,F�� � K�1 − ��	−2
0

1

dx�A�x� − A�0�� , �73�

where K is a constant. Similarly, we obtain the leading term

for the right eigenstate �F̃� ,��,

�F̃�,�� � �F̃in,�� − 	
l=0

�

�l = 1 − 	
l=0

�

�l,

as ��1. Using these facts and Eq. �70�, we have for t→�

�A, P̂t�� � 
0

1

dxA�x� +
K�

t	−1�1 − 	
l=0

�

�l�
0

1

dx�A�x� − A�0�� ,

�74�

where K� is a constant. Equation �74� shows that the corre-
lation functions decay algebraically. From Eq. �74�, it is
found that the power spectral density �PSD� S�f� behaves as
�25�

S�f� � 

1

f2−	 for 1 � 	 � 2,

�ln f � for 	 = 2,

const for 	 
 2.
� �75�

Figure 2�a� shows PSDs S�f� of time series A(x�t�), where
the observable A�x� is a step function defined on x� �0,1� as

A�x� = �− 1 for x � �0,1/2� ,

1 for x � �1/2,1� .
� �76�

And x�t� is produced by the successive mappings of
��x� :x�t+1�=�(x�t�). All calculations are performed in long
double precision. Each PSD is obtained by averaging over
20 000 initial conditions uniformly distributed in �0, 1�.
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In Fig. 2�a�, the PSDs for 	�2 exhibit clear 1 / f� scalings
in low-frequency regions. Figure 2 displays this scaling ex-
ponent � of the PSD S�f��1/ f� as a function of the system
parameter 	. And we show the theoretical prediction derived
in the above �Eq. �75�� by the dashed line in Fig. 2�b�. Ob-
viously, the numerical results show good agreement with the
theoretical prediction.

B. Area-preserving extension

As stated in the introduction, the one-dimensional map
investigated in the present paper can be extended to an area-
preserving two-dimensional transformation defined on the
unit square; this extension � : �0,1�2→ �0,1�2 is defined as

��x,y� = 
��k
−�x − �k

−� + �k−1
− ,

y

�k
−� for x � ��k

−,�k−1
− � ,

��k
+�x − �k

+� + �k−1
− ,

y

�k
+ +

1

�k
−� for x � ��k

+,�k−1
+ � ,�

�77�

where k=1,2 , . . .. Obviously, the transformation for the hori-
zontal coordinate x is the same as the map ��x� defined by
Eq. �1� and does not depend on the vertical coordinate y.
This relation between the one-dimensional map ��x� and its
area-preserving extension ��x ,y� is the same as that between
the Bernoulli and baker transformations. Note that the map
��x ,y� is area preserving because the Jacobian of this map is

equal to 1 everywhere. The phase space �i.e., the unit square�
of this area-preserving map can be partitioned into infinite
pieces like

�0,1�2 = �
k=1

�

��x,y��x � ��k
−,�k−1

− �,y � �0,1�� � �
k=1

�

��x,y��x

� ��k
+,�k−1

+ �,y � �0,1�� . �78�

See Fig. 3�I�. Each piece of this partition ��x ,y� �x
� ��k

± ,�k−1
± � ,y� �0,1�� is uniformly stretched in the horizon-

tal direction and uniformly squeezed in the vertical direction.
The left pieces ��x ,y� �x� ��k

− ,�k−1
− � ,y� �0,1�� are mapped to

the bottom part of the unit cell and the right pieces
��x ,y� �x� ��k

+ ,�k−1
+ � ,y� �0,1�� to the upper �Fig. 3�II��.

Note that although our theoretical and numerical results
are for the one-dimensional map ��x�, these results are also
true for this area-preserving map if an observable does not
depend on the vertical coordinate y—namely,
A�x ,y�=A�x�—because the horizontal coordinate x of this
area-preserving map is transformed by ��x� and independent
of y. Therefore this area-preserving extension of ��x� has
also long-time correlations with a power law decay. This fact
contrasts to the results for the baker transformation, which
exhibits an exponential decay of correlation functions.

Here let us define some terms for later discussions. We
define the kth escape domain Dk as
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FIG. 3. The area-preserving map ��x ,y� defined by Eq. �77� for b=0.5 and 	=1.3. The domains with labels �A ,B ,C ,a ,b ,c� in the left
cell �I� are mapped into the domains with the same labels in the right �II�, respectively. Each domain is uniformly stretched in the horizontal
direction and uniformly squeezed in the vertical direction. There are an infinite number of such domains, and each one is mapped in a similar
way. The partition is displayed only for the region �x� ��15

− ,�0
−�� and �x� ��6

+ ,�0
+�� in the left cell �I�, only for x� ��15

− ,�0
+� in the right �II�.

The other regions are not displayed because the structures are too fine to see.
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Dk = ��x,y��x � ��k−1
− ,�k−2

− �,y � �0,1�� �79�

for k=1,2 , . . .. For the points in kth escape domain Dk, it
takes �k−1� times of the mappings �n to escape from the left
part x�b to the right x
b. We also define the kth injection
domain Dk

in as

Dk
in = ���x,y��x � ��k

+,�k−1
+ �,y � �0,1�� �80�

for k=1,2 , . . .. The injection domains are the upper part of
the unit square, which are displayed in Fig. 3�II� by the la-
bels �A ,B ,C , . . . �. We denote the areas—namely, the Le-
besgue measures—of the kth escape and injection domains
as Sk and Sk

in, respectively. These areas obey scaling laws
Sk�1/k	 and Sk

in�1/k	+1. This latter power law gives the
escape time distribution �31�.

V. SUMMARY AND REMARKS

In this paper, we have introduced a piecewise linear map
and analyzed its spectral properties. We have derived the
generalized eigenfunctions and eigenvalues explicitly for
classes of observables and piecewise constant initial densi-
ties. Our model is a modified version of the map analyzed in
Ref. �19�. The main difference of these two models is the
normalizability of invariant densities. The invariant density
of the model investigated in Ref. �19� is not normalizable for
a parameter region. This is a typical property of dynamical
systems with marginal fixed points �19,20,26� and is caused
by divergence of invariant density at marginal fixed points.

On the other hand, the uniform density is invariant for the
map ��x� discussed in the present paper; therefore, the in-
variant density is normalizable for any values of the system
parameters, even though our system has also a marginal fixed
point. This is because the present model has the mechanism
suppressing injections of the orbits into neighborhoods of the
marginal fixed point and this property prevents divergences
of the invariant density at the marginal fixed point. As a
consequence of the normalizability, the present model does
not exhibit nonstationarity, which is generically observed in
maps with marginal fixed points �19,20,26�.

The spectral properties of the present model are similar to
those of Ref. �19� in the locations of the discrete and con-
tinuous spectra. There are two simple eigenvalues 1 and �d
� �−1,0�; the former corresponds to the invariant eigenstate
and the latter to the oscillating one. The eigenstate associated
with �d, however, does not contribute to the long-time be-
haviors of the correlation functions because it decays expo-
nentially fast. There is also the continuous spectrum on the
real interval �0, 1�; this continuous spectrum leads to the
power law decay of correlation functions. We have con-
firmed the good agreement between the theoretical prediction
and the numerical result for scaling behaviors of the PSD
S�f��1/ f�.

Furthermore, the piecewise linear map ��x� has been ex-
tended to an area-preserving invertible map on the unit
square. In contrast to the baker transformation, which is hy-
perbolic and shows an exponential decay of correlation func-
tions, our model is nonhyperbolic and displays the power
law decay of correlations.

As is well known, mixed-type Hamiltonian systems often
exhibit a power law decay of correlation functions. The area-
preserving map ��x ,y� introduced in this paper may be con-
sidered as an abstract model of mixed-type Hamiltonian sys-
tems in the following sense. Instabilities of the orbits of the
map ��x ,y� �Eq. �77�� are weak in neighborhoods of the line
x=0, and the escape time from the left part x�b to the right
part x
b diverges as x→0. In other words, the orbits stick
to the line x=0 for long times. This property seems to be
similar to the dynamics of Hamiltonian systems near torus,
cantorus, and marginally unstable periodic orbits, where cha-
otic orbits stick for long times.

And, in fact, similar dynamics is observed in a Poincaré
map of the mushroom billiard �31�, which has been proposed
recently as a model of mixed type systems with sharply di-
vided phase spaces �32–36�. In Ref. �31�, it is found that an
infinite partition can be constructed on a Poincaré surface
using escape times from neighborhoods of the outermost tori
and that the area of the escape domains and the injection
domains obey the scaling relations Dk�1/k2 and Dk

in

�1/k3, respectively. These relations correspond to the case
	=2 of the present model. Note that a correlation function of
the Poincaré map of the mushroom billiard exhibits a power
law decay C�n��1/n �31�, and this is consistent with the
analytical result of the present paper. This relation between
the map ��x ,y� and a billiard system is similar to that of the
baker map and the Lorentz gas �10�.

Since the map ��x ,y� is an elementary model of conser-
vative systems and can be treated analytically to some ex-
tent, this system may be important for understanding the re-
lationships between nonequilibrium phenomena, such as
relaxation and transport, and underlying reversible dynamics;
this is a fundamental problem in dynamical system theory
and statistical mechanics �1,2�.
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APPENDIX: ASYMPTOTIC BEHAVIORS

When �z�\0

In this appendix, we show the inequality

�
0

�

ds
s	−1e−s

z − e−s � � C�ln
1

�z��
	

�A1�

as �z�→0 and arg z� �0,2�� is fixed, where C is a positive
constant. From this inequality, the Eqs. �49� and �50� can be
derived. Let z=x+ iy in this subsection.

First, let us assume arg z� �3� /4 ,5� /4�. Splitting the in-
tegral into two pieces, we have
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0

�

ds
s	−1e−s

�z − e−s�
� 

0

ln�1/�x��

dss	−1 + 
ln �1/�x��

�

ds
s	−1e−s

�x�
.

�A2�

Apparently, the first term on the RHS of inequality �A2� has
an upper bound C1�−ln�z��	 for some positive constant C1.
On the other hand, the second term has an upper bound
C1��−ln�z��	−1. This is obtained by using an asymptotic expan-
sion of the incomplete � function �see, e.g., Ref. �37��. Thus,
in this case inequality �A1� holds.

Second, we consider the case for arg z� �� /4 ,3� /4� or
arg z� �5� /4 ,7� /4�. Using similar calculations, we have


0

�

ds
s	−1e−s

�z − e−s�
� �ln

1

�y��
	

0

1

ds
1

�H�s�
+ 

ln �1/�y��

�

ds
s	−1e−s

�y�
,

�A3�

where we define H�s� as H�s���x / �y�s−1�2+ �y�2�1−s�. It is
easy to check that H�s��1/2. Therefore, the first term has an
upper bound C2 �−ln�z��	. By using the asymptotic expansion
of the incomplete � function, we have an upper bound for the
second term: C2� �−ln�z��	−1. Thus, this case also satisfies in-
equality �A1�.

Finally, we consider the case arg z� �0,� /4� or arg z
� �7� /4 ,2��. We split the integral as


0

�

ds
s	−1e−s

z − e−s = 
0

x/2

dt
G�t�
z − t

+ 
0

x/2

dt�G�x − t�
t + iy

−
G�x + t�

t − iy
�

+ 
3x/2

1

dt
G�t�
z − t

, �A4�

where we define G�t� as G�t���ln�1/ t��	−1. By using similar
techniques as above, it can be shown that the absolute values
of the first and third terms on the RHS of Eq. �A4� have an
upper bound C3 �−ln x�	. For the imaginary part of the sec-
ond term, it is easy to derive an upper bound of its absolute
value: C3� �−ln x�	−1. On the other hand, for the real part, we
have an upper bound C3� �−ln x�	−2, which can be derived
through integration by parts after changing the variables as
t�= t /x. This completes the proof of inequality �A1�.

When �z�\1

The property, Eq. �51�, is also derived in the same way.
We briefly comment about the derivation. Let us begin with
an analytic continuation of ��z�,

��z� = B1
−�0���z� + 	

j=0

�

	
l=2

�

Bl
−�0�l	 � j

��	�0

�

ds
s	−1e−�j+l�s

z − e−s .

�A5�

We consider the second term. The absolute value of the sec-
ond term has an upper bound

const � �	
j=0

�

� j
0

�

ds
s	−1e−�j+2�s

�z − e−s��1 − e−s�� . �A6�

Therefore, we show that for k=1,2 , . . . and 1�	�2,

�
0

1

ds
s	−1e−ks

�z − e−s��1 − e−s�� � C��1 − z�	−2, �A7�

as z→1 and arg�z−1�� �0,2�� with a constant C�. Note that
the integral in �A6� from 1 to � is convergent. For 	�2, it
can be analyzed in a similar way but the RHS of inequality
�A7� should be changed to a constant �	
2� or a logarith-
mic correction −ln�1−z� �	=2�. Let z=1+x+ iy in the fol-
lowing.

First, let us assume arg z� �� /4 ,3� /4� or arg z
� �5� /4 ,7� /4�; then, we have


0

1

ds
s	−1e−ks

��z − e−s��1 − e−s��
� e

0

1

ds
s	−2

�z − e−s�
, �A8�

where we have used 1−e−s�s /e for s� �0,1�. The RHS of
inequality �A8� can be estimated, by splitting the integral, as


0

1

ds
s	−2

�z − e−s�
� 

0

2e�y�

ds
s	−2

�y�
+ 2e

2e�y�

1

dss	−3, �A9�

where we have used 1−e−s�s /e again. It is obvious that the
RHS of inequality �A9� is less than C4� �1−z�	−2. Therefore
inequality �A7� is satisfied in this case.

Second, the case for arg z� �0,� /4� or arg z
� �7� /4 ,2�� can be analyzed in the same way as the first
case �but in this case, split the integral in terms of x instead
of y�. Thus we omit the details.

Finally, when arg z� �3� /4 ,5� /4�, we have


0

1

ds
s	−1e−ks

�z − e−s��1 − e−s�
�A10�

=
1/e

1−3�/2

dt
F�t�
z − t

+ 
0

�/2

dt�F�1 − � − t�
t + iy

−
F�1 − � + t�

t − iy
�

+ 
1−�/2

1

dt
F�t�
z − t

, �A11�

where we define �
0 as �= �x� and F�t� as F�t�
��ln�1/ t��	−1tk−1 / �1− t�. The first and third terms of the
RHS can be estimated in the same way as inequality �A9�,
and we obtain an upper bound for their absolute values as
C5�1−z�	−2. For the imaginary part of the second term, we
have easily a bound of its absolute value: C5��1−z�	−2. On the
other hand, for the real part, we also have a bound C5��1
−z�	−2 through integration by parts after changing the vari-
ables as t�= t /�. Thus we complete the proof of inequality
�A7�.

From inequality �A7�, it can be shown that ��z�→��1�
��, as z→1. Thus the first term of Eq. �A5� converges as
z→1. Consequently, we have Eq. �51�.
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